jueves, 28 de julio de 2016

INGENIERÍA INVERSA

Ingeniería inversa

QUE ES:
Las tareas habituales de la ingeniería implican seguir la dirección de lo específico a lo general, pero la ingeniería inversa indica que las labores deben realizarse siguiendo la dirección opuesta, de lo general a lo específico, algo poco común para los ingenieros, que implica invertir el modo de pensamiento y que sin duda es un gran ejercicio de pensamiento además que es una habilidad de mucha importancia hoy en día.
USOS:
La ingeniería inversa tiene muchas aplicaciones en el mundo actual y es aplicada por todo tipo de empresas, de todos los ámbitos tecnológicos. Algunos de los usos principales son:
  • Investigar, analizar y comprender la tecnología utilizada por otras naciones o por otras empresas.
  • Analizar los productos de la competencia para analizar sin infringen alguna patente de otra empresa.
  • Desarrollar productos que sean compatibles con otros productos, sin tener acceso a los detalles técnicos de estos últimos.
  • Comprobar la seguridad de un producto, en informática por ejemplo, para conocer las brechas de seguridad que puede tener un programa.
CLASES:

Actualmente la ingeniería inversa se divide en dos grandes vertientes: ingeniería inversa de producto e ingeniería inversa de software; en la primera entran todos aquellos productos físicos tales como máquinas, componentes electrónicos, dispositivos, etc., y en la segunda protocolos, códigos de programación, aplicaciones digitales, etc. No es una definición completamente establecida pero es la más aceptada actualmente.

MÉTODOS DE APRENDIZAJE:

La ingeniería inversa no es un método de solución sino más bien de aprendizaje, como implica analizar un objeto hasta el punto de comprender cada uno de sus componentes y sus funciones entonces la cantidad de conocimientos obtenida será bastante, pero solo hemos aprendido, para solucionar el problema deberemos aplicar lo aprendido y comenzar de cero nuevamente.

PROBLEMAS LEGALES

Si se sigue un proceso de ingeniería inversa bien establecido no tiene porque haber ningún problema legal; esto implica cumplir al pie de la letra el objetivo de la ingeniería inversa: obtener un producto que haga lo mismo pero que sea nuevo, que no aplique los mismos principios de funcionamiento del producto analizado; es decir, la ingeniería inversa se debe utilizar solamente para conocer un producto, con el fin de hacer uno que haga lo mismo pero de otro modo.

miércoles, 6 de julio de 2016

LEY DE COULOMB

La ley de Coulomb es válida solo en condiciones estacionarias, es decir, cuando no hay movimiento de las cargas o, como aproximación cuando el movimiento se realiza a velocidades bajas y en trayectorias rectilíneas uniformes. Es por ello que es llamada fuerza electrostática.
En términos matemáticos, la magnitud  de la fuerza que cada una de las dos cargas puntuales  y  ejerce sobre la otra separadas por una distancia  se expresa como:
Dadas dos cargas puntuales  y  separadas una distancia  en el vacío, se atraen o repelen entre sí con una fuerza cuya magnitud está dada por:
La Ley de Coulomb se expresa mejor con magnitudes vectoriales:
donde  es un vector unitario, siendo su dirección desde la cargas que produce la fuerza hacia la carga que la experimenta.
Al aplicar esta fórmula en un ejercicio, se debe colocar el signo de las cargas q1 o q2, según sean estas positivas o negativas.
El exponente (de la distancia: d) de la Ley de Coulomb es, hasta donde se sabe hoy en día, exactamente 2. Experimentalmente se sabe que, si el exponente fuera de la forma , entonces .
Obsérvese que esto satisface la tercera de la ley de Newton debido a que implica que fuerzas de igual magnitud actúan sobre  y . La ley de Coulomb es una ecuación vectorial e incluye el hecho de que la fuerza actúa a lo largo de la línea de unión entre las cargas.

JAULA DE FARADAY

JAULA DE FARADAY
Se conoce como jaula de Faraday el efecto por el cual el campo electromagnético en el interior de un conductor en equilibrio es nulo, anulando el efecto de los campos externos. Esto se debe a que, cuando el conductor está sujeto a un campo electromagnético externo, se polariza, de manera que queda cargado positivamente en la dirección en que va el campo electromagnético, y cargado negativamente en el sentido contrario. Puesto que el conductor se ha polarizado, este genera un campo eléctrico igual en magnitud pero opuesto en sentido al campo electromagnético, luego la suma de ambos campos dentro del conductor será igual a 0.

Este fenómeno, descubierto por Michael Faraday, tiene una aplicación importante en aviones o en la protección de equipos electrónicos delicados, tales como discos duros o repetidores de radio y televisión situados en cumbres de montañas y expuestos a las perturbaciones electromagnéticas causadas por las tormentas.Se pone de manifiesto en numerosas situaciones cotidianas, por ejemplo, el mal funcionamiento de los teléfonos móviles en el interior de ascensores o edificios con estructura de rejilla de acero. Una manera de comprobarlo es con una radio sintonizada en una emisora de Onda Media. Al rodearla con un periódico, el sonido se escucha correctamente. Sin embargo, si se sustituye el periódico con un papel de aluminio, la radio deja de emitir sonidos: el aluminio es un conductor eléctrico y provoca el efecto jaula de Faraday.

ELECTROSCOPIO

El electroscopio es un instrumento que se utiliza para saber si un cuerpo está cargado eléctrica mente.
El electroscopio consiste en una varilla metálica vertical de vidrio que tiene una esfera en la parte superior y en el extremo opuesto dos láminas de aluminio muy delgado. La varilla está sostenida en la parte superior de una caja de vidrio transparente con un armazón de cobre en contacto con tierra. Al acercar un objeto electrizado a la esfera, la varilla se electriza y las laminillas cargadas con igual signo de electricidad se repelen, separándose, siendo su divergencia una medida de la cantidad de carga que han recibido. La fuerza de repulsión electrostática se equilibra con el peso de las hojas. Si se aleja el objeto de la esfera, las láminas, al perder la polarización, vuelven a su posición normal.
Cuando un electroscopio se carga con un signo conocido, puede determinarse el tipo de carga eléctrica de un objeto aproximándolo a la esfera. Si las laminillas se separan significa que el objeto está cargado con el mismo tipo de carga que el electroscopio. De lo contrario, si se juntan, el objeto y el electroscopio tienen signos opuestos.
Un electroscopio pierde gradualmente su carga debido a la conductividad eléctrica del aire producida por su contenido en iones. Por ello la velocidad con la que se carga un electroscopio en presencia de un campo eléctrico o se descarga puede ser utilizada para medir la densidad de iones en el aire ambiente. Por este motivo, el electroscopio se puede utilizar para medir la radiación de fondo en presencia de materiales radiactivos.
El primer electroscopio conocido, el versorium, un electroscopio pivotante de hojuelas de oro, fue inventado por William Gilbert en 1600.

CONDUCTORES Y AISLANTES

Conductor eléctrico:Cualquier material que ofrezca poca resistencia al flujo de electricidad. La diferencia entre un conductor y un aislante, que es un mal conductor de electricidad o de calor, es de grado más que de tipo, ya que todas las sustancias conducen electricidad en mayor o en menor medida. Un buen conductor de electricidad, como la plata o el cobre, puede tener una conductividad mil millones de veces superior a la de un buen aislante, como el vidrio o la mica.
En los conductores sólidos la corriente eléctrica es transportada por el movimiento de los electrones; y en disoluciones y gases, lo hace por los iones.

Aislantes eléctricos:El aislante perfecto para las aplicaciones eléctricas sería un material absolutamente no conductor, pero ese material no existe. Los materiales empleados como aislantes siempre conducen algo la electricidad, pero presentan una resistencia al paso de corriente eléctrica hasta 2,5 x 1024 veces mayor que la de los buenos conductores eléctricos como la plata o el cobre.
La elección del material aislante suele venir determinada por la aplicación. En los circuitos eléctricos normales suelen usarse plásticos como revestimiento aislante para los cables. El aislamiento interno de los equipos eléctricos puede efectuarse con mica o mediante fibras de vidrio con un aglutinador plástico. En los equipos electrónicos y transformadores se emplea en ocasiones un papel especial para aplicaciones eléctricas. Las líneas de alta tensión se aíslan con vidrio,porcelana u otro material cerámico.

FORMAS DE ELECTRIZACION

PROCESO DE ELECTRIZACIÓN POR FROTAMIENTO O FRICCIÓN
Cuando ponemos un cuerpo cargado en contacto con un conductor se puede dar una transferencia de carga de un cuerpo al otro y así el conductor queda cargado, positivamente si cedió electrones o negativamente si los ganó.

EJEMPLO
Una mascada o pañuelo de seda contra un peine o varilla de plástico, la mascada atrae electrones del material de plástico, por lo que este último queda con una carga positiva, mientras que la seda gana electrones y queda electrizada negativamente debido al exceso de electrones que contiene después del frotamiento.


PROCESO DE ELECTRIZACIÓN POR CONDUCCIÓN O CONTACTO
Es necesario que el cuerpo previamente electrizado entre en contacto con un cuerpo neutro para que se lleve a cabo el proceso de electrización por contacto o conducción. Esto sucede por que, al entrar los cuerpos en contacto, los electrones se transfieren del material que contiene un exceso de electrones al otro.
La distribución uniforme de la carga en el material que originalmente se encontraba en estado neutro dependerá mucho de que este sea un buen conductor de la electricidad.




PROCESO DE ELECTRIZACIÓN POR INDUCCIÓN
Un cuerpo cargado eléctricamente puede atraer a otro cuerpo que está neutro. Cuando acercamos un cuerpo electrizado a un cuerpo neutro, se establece una interacción eléctrica entre las cargas del primero y el cuerpo neutro. Como resultado de esta relación, la redistribución inicial se ve alterada: las cargas con signo opuesto a la carga del cuerpo electrizado se acercan a éste. En este proceso de redistribución de cargas, la carga neta inicial no ha variado en el cuerpo neutro, pero en algunas zonas está cargado positivamente y en otras negativamente Decimos entonces que aparecen cargas eléctricas inducidas. Entonces el cuerpo electrizado induce una carga con signo contrario en el cuerpo neutro y por lo tanto lo atrae.

INTERACCIÓN ENTRE CARGAS

INTERACCIÓN ENTRE CARGAS
en el año 1785 era conocida la forma como interactuaban las partículas cargadas. Esto fue propuesto por el físico e ingeniero francés Charles Augustin de Coulomb, y expresado en la ley que lleva su nombre. Además, en su honor fue bautizada la unidad de carga eléctrica en el sistema MKS: el Coulomb o Culombio (C).

Ver: PSU: Física. La mencionada ley de Coulomb establece que la fuerza entre dos cuerpos cargados
es directamente proporcional a la carga de ambos cuerpos e inversamente proporcional al cuadrado de la distancia entre ellos; y además, la fuerza va en la dirección de una línea recta imaginaria que une ambos cuerpos.
En la forma, esta ley de Coulomb para las interacciones eléctricas es muy semejante a la ley de la gravitación universal para las interacciones gravitatorias: en ambos casos la fuerza entre dos cuerpos es inversamente proporcional al cuadrado de la distancia que los separa; la fuerza es proporcional al producto de las cargas en el caso de las fuerzas eléctricas, y proporcional al producto de las masas en el caso de las fuerzas gravitatorias.
Sin embargo, existen algunas diferencias importantes entre ambas: mientras todas las masas se atraen, las cargas eléctricas son —como ya vimos— de dos tipos (positivas y negativas), y las fuerzas entre ellas pueden ser de atracción (si las cargas son de signo contrario) o de repulsión (si las cargas son del mismo signo); las interacciones eléctricas son mucho más intensas que las interacciones gravitatorias: las fuerzas eléctricas suelen ser 1.036 hasta 1.040 veces mayores que las fuerzas gravitatorias.
De hecho, las interacciones eléctricas son las responsables de las interacciones en átomos y moléculas, mientras que la interacción gravitatoria resulta ser demasiado débil para justificar estas estructuras: la interacción eléctrica es del orden de magnitud requerido para producir el enlace entre átomos para formar moléculas, o el enlace entre electrones y protones para formar átomos.

ELECTROSTÁTICA

ELECTROSTÁTICA

La carga eléctrica constituye una propiedad fundamental de la materia. Se manifiesta a través de ciertas fuerzas, denominadas electrostáticas, que son las responsables de los fenómenos eléctricos. Su influencia en el espacio puede describirse con el auxilio de la noción física de campo de fuerzas. El concepto de potencial hace posible una descripción alternativa de dicha influencia en términos de energías.
El término eléctrico, y todos sus derivados, tiene su origen en las experiencias realizadas por Tales de Mileto, un filósofo griego que vivió en el siglo sexto antes de Cristo. Tales estudió el comportamiento de una resina fósil, el ámbar -en griego elektron-, observando que cuando era frotada con un paño de lana adquiría la propiedad de atraer hacia sí pequeños cuerpos ligeros; los fenómenos análogos a los producidos por Tales con el ámbar o elektron se denominaron fenómenos eléctricos y más recientemente fenómenos electrostáticos.
La electrostática es la parte de la física que estudia este tipo de comportamiento de la materia, se preocupa de la medida de la carga eléctrica o cantidad de electricidad presente en los cuerpos y, en general, de los fenómenos asociados a las cargas eléctricas en reposo. El desarrollo de la teoría atómica permitió aclarar el origen y la naturaleza de los fenómenos eléctricos; la noción de fluido eléctrico, introducida por Benjamín Franklin (1706-1790) para explicar la electricidad, fue precisada a principios de siglo al descubrirse que la materia está compuesta íntimamente de átomos y éstos a su vez por partículas que tienen propiedades eléctricas.
Como sucede con otros capítulos de la física, el interés de la electrostática reside no sólo en que describe las características de unas fuerzas fundamentales de la naturaleza, sino también en que facilita la comprensión de sus aplicaciones tecnológicas. Desde el pararrayos hasta la televisión una amplia variedad de dispositivos científicos y técnicos están relacionados con los fenómenos electrostáticos.



QUE ES ELETRICIDAD

QUE ES ELECTRICIDAD

La Electricidad es una propiedad física de la materia. Consiste en aquella interacciónnegativa o positiva existente entre los protones y los electrones de la materia. El origen etimológico de la palabra es Griego, quienes la estudiaron en esta civilización la llamaron“Ámbar” por el color tan versátil y luminoso que presentaba, sin embargo el término fue introducido en la sociedad científica por primera vez por el científico inglés William Gilbert en el Siglo XVI para describir el fenómeno de interacción de energía entre partículas.

Debemos tener en cuenta el significado de dos términos más en el estudio de la electricidad, la corriente eléctrica es una magnitud física, que describe la cantidad de electricidad que pasa a través de un conductor. Existen dos tipos de corrientes, que son: La continua, que no es interrumpida por ningún lapso de vacío, debido a que es en un solo sentido. La otra es la alterna, que se alterna en dirección y no es constante.
El otro término es Energía, cuando decimosenergía eléctrica nos referimos a ese producto, a ese resultado en forma de movimiento que se genera cuando la corriente eléctrica interactúa con el ambiente. Por lo general, asociamos la energía eléctrica con la producción de calor, el funcionamiento de equipos eléctricos (es decir que funcionan con electricidad). También conocemos que la energía eléctrica es aquella que se guarda en una batería y es almacenada para ser utilizada posteriormente, ejemplo de esta energía eléctrica: la que emplean los automóviles y los teléfonos celulares. Esta tecnología les permite no depender de una conexión constante con una fuente de energía.
La electricidad generada por el hombre es creada por turbinas, condensadores y maquinarias que se basan en la fuerza de la naturaleza para funcionar, como las represas, que utilizan la fuerza de grandes cantidades de agua para generar la corriente que abastece grandes ciudades. Pero el planeta tierra es también capaz de generar ella mismaelectricidad, esos rayos, centellas y relámpagos que vemos en el cielo en medio de una tormenta son descargas eléctricas generadas por el choque de enormes cúmulos de materia y energia. A esto se le denomina corriente eléctrica natural y puede ser aprovechada por el hombre con pararrayos y conductores súper resistentes capaces de absorber el impacto de una descarga de tal magnitud.